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A method for analyzing unsteady combustion of explosives and powders (method of combustion zone 
"freezing"),  based on the assumption of purely thermal  one-dimensional effects in the combustion p rocess ,  
was proposed in [1]. Owing to the high thermal  conductivity of metal, the heat flux from the combustion 
zone increases  with the approach of the combustion wave to the p o w d e r - m e t a l  interface.  When a cer tain 
c r i t ica l  value of the flux is reached,  combustion ceases  and a layer  of unburnt powder remains  on the 
metal surface.  Dependance of the thickness of the unburnt powder layer  on p ressu re  was theoret ical ly  
analyzed in [2] and experimental ly  establ ished in [1]. A quantitative analysis  of conditions of powder 
combustion extinction result ing f rom the interaction between the combustion zone and the p o w d e r - m e t a l  
interface is given in [3]. 

Data on the effect of initial temperature  on the thic~- . s s  of the unburnt powder layer derived by the 
method of "freezing" the combustion zone are presented below. The pract icabi l i ty  of approximate ca l -  
culation of unsteady p roces se s  occuring during the approach of a combustion wave to the p o w d e r - m e t a l  
interface is examined. Theoret ical  and experimental  data are compared.  

1. Statement of the Model Problem.  The problem of thermal  interaction between the combustion 
front and the m e t a l - p o w d e r  interface for the model of unstable powder combustion proposed by Zel 'dovich 
[4, 5] can be presented in the form [2] 

~" = ~", 0 < ~ < ~ (~) (1.1) 

~r (%,, ~) = 1, {} (0, ~) = e -L, ~ (~, O) = e ~-L, ~ (0) = L (1.2) 

U = - w ,  w = F (w, (~')~) ( 1 . 3 )  

The following notation is used: 

ff(~, ~) _ T(x, t ) - - T o  ".o _ ~  t.o ~ 
.~Ts__T ~ , ~-~--~-X, ~,= Xs, T = ~  

L "d 
U 0 

Here x and t are, respectively, the coordinate and the time, ~ is the coefficient of thermal diffusivity, 
u 0 and u are the rates of powder combustion under steady and unsteady conditions, respectively, x s is the 
coordinate of the moving combustion surface, I is the thickness of the powder layer at the initial instant 
of time, T s is the temperatare at the surface of combustion, and T o is the initial temperature of the powder. 
Dots and primes denote differentiation with respect to time and coordinates respectively. 

The boundary condition at the powder-metal interface (~ = 0), introduced in [3], avoids the difficul- 
ties related to initial conditions at infinity (the so-called degenerated boundary conditions) of the form 
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Fig .  1 

The e r r o r  in t roduced  by  the subst i tut ion of condit ion (1.2) for  the z e r o  boundary  
condit ion at the in te r face  can be made as  smal l  as  d e s i r e d  by choosing a suff i -  
c ien t ly  thick ini t ial  l a y e r  of the powder  sample  (L >> 1), 

If the dependence of the s table  ra te  of combus t ion  on t e m p e r a t u r e  T O and 
p r e s s u r e  p is a p p r o x i m a t e d  by f o r m u l a  u 0 = ulp u exp fiT0, the function F(w,(~ ' )s  ) 
defining the r e l a t ion  between the unstable  combus t ion  ra te  and the t e m p e r a t u r e  
g r ad i en t  at  the su r f ace  of combus t ion  is of the f o r m  

. T (0 In no\ (1 .4 )  

If, however ,  this dependence is a p p r o x i m a t e d  by function u 0 = apU/(1 - aT0) , 
then fo r  funct ion F(w(d ' )s)  we find 

- ~ (~ ' )~  ( 1 . 5 )  m -- t q- 

2. The Approx imate  Solution. An expl ic i t  ana ly t i ca l  solution of the p r o b l e m  (1.1)-(1.3) is not poss ib le .  
The mos t  widely used  method for  the app rox ima te  solut ion of p r o b l e m s  of unstable combus t ion  is that  of 
i n t eg ra l  r e l a t i onsh ips  [6-9].  The s u c c e s s  of this method  l a rge ly  depends on a c o r r e c t  a p r i o r i  se lec t ion  of 
the f o r m  of the sought  app rox ima te  solut ion.  Le t  us inves t iga te  the poss ib i l i t y  of solving p r o b l e m  (1.1)- 
(1.3) by e x p r e s s i n g  the d i m e n s i o n l e s s  t e m p e r a t u r e  in the f o r m  

r162 
~(~, ~ ) = e  ~ - ~ - ( t  ~,  _~ ~,2 ~ t ~ ' , ~  ---~-s)(e s - - e - L ) . - t - ( t - - ' ~ s  ) n ~ o a n ~ T s )  (2.1) 

Here  coef f i c ien t s  a n = a n ( r  ) a re  the unknown funct ions of t ime such that  an(0 ) = 0. 

Funct ion  (2.1) sa t i s f i e s  the bounda ry  and init ial  condi t ions  (1.2). F o r  a m e r e  speci f ic  definit ion of 
the approx ima te  solut ion,  it is  n e c e s s a r y  to wri te  down the equa t ions  de te rmin ing  functions an(T). A sa r i s -  
f a c t o r y  approx ima t ion  can be hoped for ,  if in expansion (2.1) we re ta in  only the t e r m  with n = 0 and define 
funct ion a0(r) by the hea t -ba lance  in t eg ra l  [8] 

~s 
dd~ i ~ (~' T)d~-- ~" = (#')~ --  (~')o (2.2) 

o 

Substi tut ing (2.1) into (2.2), we find 

~82a0" ~- (~ '~  --  6)ao q- 3/, ~ "  (e-~ ~_ e - r . @  ~se-~s __ 2) --  3~ (1 - -  e-~) = 0 (2.3) 

Equat ion (1.3), which d e t e r m i n e s  the var ia t ion  of the ~s-Coordina te  of the sur face  of combust ion ,  now 
takes  the f o r m  

~[ = - -  F (~,', (ff')~) (2.4) 

(~ ' )~  = i ~ , ( e  -~'s - -  e-L)/~8 (2.5~ 

Note that  function (2.1) is such that  the t e m p e r a t u r e  g rad ien t  at the su r f ace  of combus t ion  is e x p r e s s e d  
in t e r m s  of only the ~s-Coord ina te  of that  su r face ;  hence,  the approx ima te  equat ion fo r  the ra te  of unstable  
combus t ion  can be i n t eg ra t ed  independent ly  of Eq.  (2.3). 

Thus ,  when the r e l a t ionsh ip  be tween  the ra te  of unstable  combus t ion  and the t e m p e r a t u r e  g rad ien t  at  
the su r face  of combus t ion  is def ined by (1.5), Eq.  (2.4) is in tegrable  in quadra t i c s ,  which y ie lds  

~s 
l ~rt - -  s e = zd~ , p = Q _ 

P x - -  Qe -x I q-e"' t + e  
L 

Let  us  examine  the p r o b l e m  of de te rmin ing  the th ickness  h of the l aye r  of powder  which r e m a i n s  
unburnt  on the su r f ace  of meta l  with (1.4) as  the law of combus t ion  ext inct ion p r o p o s e d  by  Ze l ' dov ich .  Ac-  
co rd ing  to [4, 5], the t e m p e r a t u r e  g r ad i en t  at  the su r f ace  of  combus t ion  cannot  exceed ,  u n d e r g i v e n  con-  
ditions, a c e r t a i n  m a x i m u m  value equal  to 

0 % *  = 1-!- e~-i (2.6) 

272 



Equating the expression (2.5) of the temperature gradient at the surface of combustion to its critical 

value (2.6), we obtain 

I e~_l ~ -[- + (e -~ - -  e-L), A huo ( 2 . 7 )  - -  _ - -=z __  ~ - -  

which determines  the thickness of the powder layer  on the metal at the instant of combustion extinction. 

P a r a m e t e r  e - L  can, obviously, be neglected when actually solving Eq. (2.6). This equation has a 
solution for any value of pa r ame te r  e. 

Equation (2.7) makes it possible to investigate the dependence of h on the initial temperature  T o and 
p re s su re  p. Differentiating (2.7) with respec t  to T o and p, we obtain 

, ;~ -~  ~ , [ ~ + A  ~ _ ~ l - ~ ( a ~ , ~  (Oh~ = _ ~ + _ p ~ e _ ~ L  A J ~o \aplTo (2.8) 

\ 0 n j  = - i  ~-~-~ ~L--~-~ j ~- (2~ 

In the par t icular  case of (8Ts/0P)T. = 0, Eq. (2.8) yields the dependence of the thickness of unburnt 
0 

powder layer on p res su re ,  established ea r l i e r  by means of s imi lar i ty  and dimensional analysis  in [2]. 

Equation (2.9) shows that the thickness of the unburnt residual layer  decreases  with increasing initial 
t empera ture .  

Let  us consider  the approximate solution of the problem of interaction between the combustion zone 
and the m e t a l - p o w d e r  interface using the model of a combustion zone with variable surface temperature  
[10]. For  this we have to use in the input equations (1.1)-(1.3), when passing to dimensionless coordinates,  
the value of T s prevail ing at the initial instant of time, and substitute condition ~ (~s,~-) = O((~')s), where 
is a known function of the temperature  gradient  at the surface of combustion, for the conditions at that 
sur face .  The fo rm of the a pr ior i  expected solution, continuously tending to the Michelson profile,  can 
then be written 

oo  

Function r obviously, satisfies the initial condition ~(1) = 1. For  the temperature  gradient  at the 
surface of combustion, f rom (2.10) we obtain 

i 
(~}')s --- �9 ((e')s § ~ (e -~- e-L) (2 ~ 

Let us use this formula for investigating the motion of the representative point in the diagram of 

w(~')s. 

Differentiating (2.11) and function w = w((~')s),  we obtain 

-~ dw 
b ' - -  w_d(]) ~s ~l [e ~s-~-~s(e-~S--.e-L)], w'-~-~-b', b~--(L%')s (2.12) 

According to [10], 

dcI) r dw e dTs 
d - - b - ~ r + e - - l '  db - - r + e - - i '  r : d 'T0 

F r o m  (2.12) it follows that 

8W 1 - ;  - ~  

w --e--  i ~s ~ (2~ 

The derived relationship is valid not only for functions of the kinds (1.4) and (1.5), but also for the 
relat ionships analyzed in [3, 10]. Equation (2o13) shows that with the approach of the combustion front to 
the m e t a l - p o w d e r  interface,  the combustion rate increases  when e > 1 and decreases  when e < 1, indepen- 
dently of the magnitude of pa rame te r  r .  
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3. The E x p e r i m e n t .  Inves t iga t ions  of the ef fec t  of in i t i a l  t e m p e r a t u r e  of the s p e c i m e n  on the th ick-  
n e s s  of the u n b u r n t  powder  l a y e r  on a copper  plate  were  c a r r i e d  out in a n i t rogen  a t m o s p h e r e  in a cons t an t  
p r e s s u r e  v e s s e l .  A m a r k - H  n i t r o g l y c e r i n  powder  was chosen  for  this  i nves t iga t ion .  In the f i r s t  s e r i e s  of 
t e s t s  at  a p r e s s u r e  of 1 a tm ,  s p e c i m e n s  of 23.6 and  9 m m  d i a m e t e r  were  used,  while in the second,  c a r r i e d  
out a t  a p r e s s u r e  of 20 a tm ,  6 - m m - d i a m o  s p e c i m e n s  were  used .  The r e s u l t s  a re  as  fol lows:  

at  the p r e s s u r e  of 1 a rm,  

T o  ( ~  ~ -  - -  60 --40 20 50 80 1 0 0  ~ 
h(mm)=0.62• 0.52_+0.06 0.27• 0.24~0.02 0.13• 0.i0+0.01 

at  the p r e s s u r e  of 20 a tm ,  

To (~ ---~ - -  140 --120 --99 --50 18 
(ram)---- 0.65• 0.40• 0.23-+0.05 0.12+_0.0i 0.04 

Within the l i m i t s  of a c c u r a c y  of this  e x p e r i m e n t  the de r i ve d  dependence  plot ted  in s e m i - l o g a r i t h m i c  
c o o r d i n a t e s  can be c o n s i d e r e d  as  l i n e a r  (see d i a g r a m ) .  The slope of these  s t r a i g h t  l ines  i s  

A l n h /  AT o = --tt.5"i0 -a (deg)-lfor p ~ i at 

h l n h /  AT o = - - i 5 . 2 . i 0  -3(deg)-i for P = 20at 

It i s  i n t e r e s t i n g  to r e c a l l  in this  connec t ion  that  a c c o r d i ng  to [11] the t e m p e r a t u r e  coef f ic ien t  of the 
r a t e  of c o m b u s t i o n  for the m a r k - H  powder  v a r i e s  as follows: 

a t  20 arm,  

at 1 atm, 

To (oc) ---- -- 150 --i00 --50 0 50 100 i40 
~ (~ ~ 0.5 2.0 3.5 5.0 7.0 9 i5 

To (~ ~ -- 200 --100 0 50 100 
~ (~ ----~ 1.0 3.0 9.8 i2.5 i4.3 

At the s ame  t ime ,  a c c o r d i n g  to [12] the coef f i c ien t  fi can be c o n s i d e r e d  to be a p i e c e w i s e - c o n s t a n t  
func t ion :  for  T O < 20~ fi = 1.95 • 10 -~ (deg)-l ;  and for  T O > 20~ fi = 14.6 • 10 -3 (deg) -1 

A qua l i t a t ive  c o r r e l a t i o n  of ob ta ined  t h e o r e t i c a l  and e x p e r i m e n t a l  r e s u l t s  can be s e e n .  The depen-  
dence of the t h i cknes s  of the u n b u r n t  powder  l a ye r  on a meta l  su r face  on in i t i a l  t e m p e r a t u r e  - the d e c r e a s -  
ing funct ion  of t e m p e r a t u r e  d in  h /dT  0 < 0 - i s  c o n f i r m e d .  The e x p e r i m e n t a l l y  ob ta ined  value of d In h/ t iT 0 
is  c lose  as to i t s  o r d e r  of magni tude  to the t e m p e r a t u r e  coef f ic ien t  of combus t i on  ra te  ft. It should be 
noted  that  a quan t i t a t ive  c o m p a r i s o n  of t h e o r e t i c a l  and e x p e r i m e n t a l  data  on the r e l a t i o n s h i p  h(To) is  not  
p o s s i b l e  for  the fol lowing r e a s o n s .  The app l i ca t ion  of the Z e l ' d o v i c h  theory  of powder  combus t i on  [4, 5], 

and, in p a r t i c u l a r ,  of the c r i t e r i o n  of c o m b u s t i o n  ex t inc t ion ,  to the m a r k - H  powder  would mean  going 
beyond  the l i m i t s  of app l i cab i l i t y  of that  theory .  The l i m i t s  of s t ab i l i t y  of the s table  combus t i on  mode 
of the m a r k - H  powder  a re  no t i ceab ly  wider  than t h e o r e t i c a l  e s t i m a t e s .  There  is  an a noma l ous  ef fec t  of 
the i n i t i a l  t e m p e r a t u r e  on the ra te  of s teady  c o m b u s t i o n  and ,  as  a consequence  of th is ,  the dependence  of 
the u n s t a b l e  c o m b u s t i o n  ra te  on the t e m p e r a t u r e  g r a d i e n t  at  the su r face  of c o m b u s t i o n  d i f fers  f rom that  
c o n s i d e r e d  by Z e l ' d o v i c h  in [4, 5]. The c r i t e r i a  of c o m b u s t i o n  ex t inc t ion  p roposed  in [3, 10] for  the m a r k -  
H powder  cannot  be at  p r e s e n t  computed .  
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